Library Coq.Logic.ClassicalUniqueChoice
This file provides classical logic and unique choice; this is
    weaker than providing iota operator and classical logic as the
    definite descriptions provided by the axiom of unique choice can
    be used only in a propositional context (especially, they cannot
    be used to build functions outside the scope of a theorem proof) 
 
 Classical logic and unique choice, as shown in
    [ChicliPottierSimpson02], implies the double-negation of
    excluded-middle in Set, hence it implies a strongly classical
    world. Especially it conflicts with the impredicativity of Set.
 
    [ChicliPottierSimpson02] Laurent Chicli, Loïc Pottier, Carlos
    Simpson, Mathematical Quotients and Quotient Types in Coq,
    Proceedings of TYPES 2002, Lecture Notes in Computer Science 2646,
    Springer Verlag.  
Require Export Classical.
Axiom
dependent_unique_choice :
forall (A:Type) (B:A -> Type) (R:forall x:A, B x -> Prop),
(forall x : A, exists! y : B x, R x y) ->
(exists f : (forall x:A, B x), forall x:A, R x (f x)).
Unique choice reifies functional relations into functions 
Theorem unique_choice :
forall (A B:Type) (R:A -> B -> Prop),
(forall x:A, exists! y : B, R x y) ->
(exists f:A->B, forall x:A, R x (f x)).
The following proof comes from [ChicliPottierSimpson02] 
    
  